Get the latest tech news

100 years of Zermelo's axiom of choice: What was the problem with it? (2006)


’s axiom of choice: What was the problem with it? 2006 WORK IN PROGRESS -- Partially mechanised by MiΓ«tek Bak -- TODO: Theorem 2 module mi.MartinLof2006 where open import Agda.Primitive using (Level ; _βŠ”_ ; lsuc) id : βˆ€ {π“ˆ} {S : Set π“ˆ} β†’ S β†’ S id x = x infixr 9 _∘_ _∘_ : βˆ€ {π“ˆ 𝓉 π“Š} {S : Set π“ˆ} {T : S β†’ Set 𝓉} {U : βˆ€ {x} β†’ T x β†’ Set π“Š} (f : βˆ€ {x} (y : T x) β†’ U y) (g : βˆ€ x β†’ T x) (x : S) β†’ U (g x) (f ∘ g) x = f (g x) Relation : βˆ€ {π“ˆ} (S : Set π“ˆ) β„“ β†’ Set _ Relation S β„“ = S β†’ S β†’ Set β„“ Reflexive : βˆ€ {π“ˆ β„“} {S : Set π“ˆ} (_∼_ : Relation S β„“) β†’ Set _ Reflexive _∼_ = βˆ€ {x} β†’ x ∼ x Symmetric : βˆ€ {π“ˆ β„“} {S : Set π“ˆ} (_∼_ : Relation S β„“) β†’ Set _ Symmetric _∼_ = βˆ€ {x y} β†’ x ∼ y β†’ y ∼ x Transitive : βˆ€ {π“ˆ β„“} {S : Set π“ˆ} (_∼_ : Relation S β„“) β†’ Set _ Transitive _∼_ = βˆ€ {x y z} β†’ x ∼ y β†’ y ∼ z β†’ x ∼ z record Equivalence {π“ˆ} (S : Set π“ˆ) β„― : Set (π“ˆ βŠ” lsuc β„―) where field _≍_ : Relation S β„― ≍-refl : Reflexive _≍_ ≍-sym : Symmetric _≍_ ≍-trans : Transitive _≍_ open Equivalence {{...}} open import Agda.Builtin.Equality using (refl) renaming (_≑_ to Id) sym : βˆ€ {π“ˆ} {S : Set π“ˆ} β†’ Symmetric {S = S} Id sym refl = refl trans : βˆ€ {π“ˆ} {S : Set π“ˆ} β†’ Transitive {S = S} Id trans refl h = h Id-≍ : βˆ€ {π“ˆ} {S : Set π“ˆ} β†’ Equivalence S _ Id-≍ = record { _≍_ = Id ; ≍-refl = refl ; ≍-sym = sym ; ≍-trans = trans } cong : βˆ€ {π“ˆ 𝓉} {S : Set π“ˆ} {T : Set 𝓉} (f : S β†’ T) {x y : S} β†’ Id x y β†’ Id (f x) (f y) cong f refl = refl Id→≍ : βˆ€ {π“ˆ β„―} {S : Set π“ˆ} {x y : S} {{≍S : Equivalence S β„―}} β†’ Id x y β†’ x ≍ y Id→≍ refl = ≍-refl open import Agda.Builtin.Sigma using (_,_ ; fst ; snd) renaming (Ξ£ to βˆƒ) infix 2 βˆƒ-syntax syntax βˆƒ-syntax S (Ξ» x β†’ T) = βˆƒ[ x ⦂ S ] T βˆƒ-syntax : βˆ€ {π“ˆ 𝓉} (S : Set π“ˆ) (T : S β†’ Set 𝓉) β†’ Set _ βˆƒ-syntax = βˆƒ infixr 2 _∧_ _∧_ : βˆ€ {π“ˆ 𝓉} (S : Set π“ˆ) (T : Set 𝓉) β†’ Set _ S ∧ T = βˆƒ[ _ ⦂ S ] T infix 2 βˆƒ!-syntax syntax βˆƒ!-syntax S (Ξ» x β†’ T) = βˆƒ![ x ⦂ S ] T βˆƒ!-syntax : βˆ€ {π“ˆ 𝓉 β„―} (S : Set π“ˆ) (T : S β†’ Set 𝓉) {{≍S : Equivalence S β„―}} β†’ Set _ βˆƒ!-syntax S T = βˆƒ[ x ⦂ S ] T x ∧ βˆ€ {y} β†’ T y β†’ x ≍ y infix 1 _↔_ _↔_ : βˆ€ {π“ˆ 𝓉} (S : Set π“ˆ) (T : Set 𝓉) β†’ Set _ S ↔ T = (S β†’ T) ∧ (T β†’ S) ↔-refl : βˆ€ {π“ˆ} β†’ Reflexive {S = Set π“ˆ} _↔_ ↔-refl = id , id ↔-sym : βˆ€ {π“ˆ} β†’ Symmetric {S = Set π“ˆ} _↔_ ↔-sym (f , f⁻¹) = f⁻¹ , f ↔-trans : βˆ€ {π“ˆ} β†’ Transitive {S = Set π“ˆ} _↔_ ↔-trans (f , f⁻¹) (g , g⁻¹) = g ∘ f , f⁻¹ ∘ g⁻¹ ↔-≍ : βˆ€ {π“ˆ} β†’ Equivalence (Set π“ˆ) _ ↔-≍ = record { _≍_ = _↔_ ; ≍-refl = ↔-refl ; ≍-sym = ↔-sym ; ≍-trans = ↔-trans } Subset : βˆ€ {π“ˆ} (S : Set π“ˆ) 𝒢 β†’ Set _ Subset S 𝒢 = S β†’ Set 𝒢 _∩_ : βˆ€ {π“ˆ 𝒢 𝒷} {S : Set π“ˆ} (A : Subset S 𝒢) (B : Subset S 𝒷) β†’ Subset S _ (A ∩ B) x = A x ∧ B x Cantor conceived set theory in a sequence of six papers published in the Mathematische Annalen during the five year period 1879–1884. In the fifth of these papers, published in 1883,1 he stated as a law of thought (Denkgesetz) that every set can be well-ordered or, more precisely, that it is always possible to bring any well-defined set into the form of a well-ordered set.

Within a couple of years, written contributions to this discussion were published by Felix Bernstein, Schoenflies, Hamel, Hessenberg, and Hausdorff in Germany; Baire, Borel, Hadamard, Lebesgue, Richard, and PoincarΓ© in France; Hobson, Hardy, Jourdain, and Russell in England; Julius KΓΆnig in Hungary; Peano in Italy, and Brouwer in the Netherlands. Despite the strength of the initial opposition against it, Zermelo’s axiom of choice gradually came to be accepted, mainly because it was needed at an early stage in the development of several branches of mathematics, not only set theory, but also topology, algebra and functional analysis, for example. Dieses logische Prinzip lÀßt sich zwar nicht auf ein noch einfacheres zurΓΌckfΓΌhren, wird aber in der mathematischen Deduktion ΓΌberall unbedenklich angewendet.

Get the Android app

Or read this on Hacker News

Read more on:

Photo of years

years

Photo of Choice

Choice

Photo of problem

problem

Related news:

News photo

Wanted: Junior cybersecurity staff with 10 years' experience and a PhD

News photo

Iconiq VCs spent two years courting Chime and the firm isn’t selling its stake

News photo

Mel Brooks is Making 'Spaceballs 2' After 38 Years