Get the latest tech news

Algorithms Interviews: Theory vs. Practice (2020)


When I ask people at trendy big tech companies why algorithms quizzes are mandatory, the most common answer I get is something like "we have so much scale, we can't afford to have someone accidentally write an O(n^2) algorithm and bring the site down". One thing I find funny about this is, even though a decent fraction of the value I've provided for companies has been solving phone-screen level algorithms problems on the job, I can't pass algorithms interviews! When I say that, people often think I mean that I fail half my interviews or something.

I think the main reason that I only found one near-example is that enough people viewed making the company better as their job, so straightforward high-value fixes tended not exist because systems were usually designed such that they didn't really have easy to spot improvements in the first place. We've discussed that, at all but one company I've worked for, there are incentive systems in place that cause developers to feel like they shouldn't spend time looking at efficiency gains even when a simple calculation shows that there are tens or hundreds of millions of dollars in waste that could easily be fixed. Thanks to Leah Hanson, Heath Borders, Lifan Zeng, Justin Findlay, Kevin Burke, @chordowl, Peter Alexander, Niels Olson, Kris Shamloo, Chip Thien, Yuri Vishnevsky, and Solomon Boulos for comments/corrections/discussion

Get the Android app

Or read this on Hacker News

Read more on:

Photo of theory

theory

Photo of practice

practice

Related news:

News photo

US Space Force says it needs more practice at responding to orbital emergencies

News photo

Theory of Constraints

News photo

3rd Edition of Programming: Principles and Practice Using C++ by Stroustrup