Get the latest tech news

Amazon Drone Beehive Concept (2019)


Rapid technological developments in autonomous unmanned aerial vehicles (UAV or drones) and an evolving legislation may soon open the way for their large-scale implementation in the last mile delivery of products. The use of drones could drastically decrease labour costs and has been hyped as a potential disruptor to the parcel delivery industry. Online retailers and delivery companies such as Amazon, are already filing up patents for the development of multi-level fulfilment centres for unmanned aerial vehicles or “drone-beehives” that would allow the deployment of this technology within built environment. A substantial amount of research has been carried out in the last years on the potential use of drones for parcel delivery, principally in the area of logistic optimisation. However, little is known about the potential market and economic viability of such services in Europe. This paper presents a modelling framework using EU-wide high-resolution population and land-use data to estimate the potential optimal location of drone-beehives based on economic viability criterion. It estimates the potential number of EU28 citizens that could potentially benefit from last mile-drone delivery services under four scenarios. The performed analyses indicates that under the scenario considered as the most technologically realistic, up to 7% of EU citizens could get access to such services. When considering technological improvements scenarios, the share reaches 30%. Furthermore, results suggest that due to the differences in population and land-use patterns in the different Member States, the potential drone coverage across Europe could be very heterogeneous, with the UK, Germany, Italy and France appearing as the most likely countries where drone-beehives may have the most efficient development.

So far, more research on UFT and policy interventions have been conducted in Europe, with European cities having to face bigger last-mile challenges due to in general denser urban situations and stricter limits on the use of large trucks in comparison e.g. to the United States [ 3]. Results from these previous studies clearly show that drones are significantly more efficient than a conventional diesel light commercial vehicle (LCV)-based delivery service in terms of both energy consumption and pollutant emissions on a per trip basis. It was created using a method previously described by Batista e Silva et al. [ 56] and Rosina et al. [ 57] which combines additional sources of information (e.g. Copernicus high-resolution layers, the Urban Atlas, the European Settlement Map, OpenStreetMap) to enhance the spatial and thematic detail.

Get the Android app

Or read this on Hacker News