Get the latest tech news
Dynamical origin of Theia, the last giant impactor on Earth
Cosmochemical studies have proposed that Earth accreted roughly 5-10% of its mass from carbonaceous (CC) material, with a large fraction delivered late via its final impactor, Theia (the Moon-forming impactor). Here, we evaluate this idea using dynamical simulations of terrestrial planet formation, starting from a standard setup with a population of planetary embryos and planetesimals laid out in a ring centered between Venus and Earth's orbits, and also including a population of CC planetesimals and planetary embryos scattered inward by Jupiter. We find that this scenario can match a large number of constraints, including i) the terrestrial planets' masses and orbits; ii) the CC mass fraction of Earth; iii) the much lower CC mass fraction of Mars, as long as Mars only accreted CC planetesimals (but no CC embryos); iv) the timing of the last giant (Moon-forming) impact; and v) a late accretion phase dominated by non-carbonaceous (NC) bodies. For this scenario to work, the total mass in scattered CC objects must have been ~ 0.2 - 0.3 M$_{\oplus}$ , with an embryo-to-planetesimal mass ratio of at least 8, and CC embryos in the ~ 0.01 - 0.05 M$_{\oplus}$ mass range. In that case, our simulations show there are roughly 50-50 odds of Earth's last giant impactor (Theia) having been a carbonaceous object - either a pure CC embryo or an NC embryo that previously accreted a CC embryo. Our simulations thus provide dynamical validation of cosmochemical studies.
View a PDF of the paper titled Dynamical origin of Theia, the last giant impactor on Earth, by Duarte Branco and 2 other authors View PDFHTML (experimental) Abstract:Cosmochemical studies have proposed that Earth accreted roughly 5-10% of its mass from carbonaceous (CC) material, with a large fraction delivered late via its final impactor, Theia (the Moon-forming impactor). Here, we evaluate this idea using dynamical simulations of terrestrial planet formation, starting from a standard setup with a population of planetary embryos and planetesimals laid out in a ring centered between Venus and Earth's orbits, and also including a population of CC planetesimals and planetary embryos scattered inward by Jupiter.
Or read this on Hacker News