Get the latest tech news

Matrix-vector multiplication implemented in off-the-shelf DRAM for Low-Bit LLMs


General matrix-vector multiplication (GeMV) remains a critical latency bottleneck in large language model (LLM) inference, even with quantized low-bit models. Processing-Using-DRAM (PUD), an analog in-DRAM computing technique, has the potential to repurpose on-device DRAM as a GeMV engine, offering additional high-throughput processing capabilities to widespread consumer devices without DRAM modifications. However, applying PUD to GeMV operations in the LLM inference pipeline incurs significant overheads $\textit{before}$ and $\textit{after}$ in-DRAM computation, diminishing the benefits of its high-throughput processing capabilities. This paper presents MVDRAM, the first practical system to accelerate GeMV operations for low-bit LLM inference using unmodified DRAM. By leveraging the data sharing patterns and mathematical linearity in GeMV operations, MVDRAM orchestrates the processor and DRAM to eliminate the costs associated with pre-arranging inputs and bit-transposition of outputs required in conventional PUD approaches. Our experimental evaluation with four DDR4 DRAM modules shows that MVDRAM achieves comparable or even better inference speed than the processor-based implementation for GeMV operations in low-bit (under 4-bit) LLM. In particular, MVDRAM achieves up to 7.29$\times$ speedup and 30.5$\times$ energy efficiency for low-bit GeMV operations. For end-to-end LLM inference, MVDRAM achieves 2.18$\times$ and 1.31$\times$ throughput improvements, along with 3.04$\times$ and 2.35$\times$ energy efficiency, for 2-bit and 4-bit quantized low-bit models, respectively. MVDRAM has the potential to redefine the AI hardware landscape by demonstrating the feasibility of standard DRAM as an LLM accelerator.

However, applying PUD to GeMV operations in the LLM inference pipeline incurs significant overheads $\textit{before}$ and $\textit{after}$ in-DRAM computation, diminishing the benefits of its high-throughput processing capabilities. By leveraging the data sharing patterns and mathematical linearity in GeMV operations, MVDRAM orchestrates the processor and DRAM to eliminate the costs associated with pre-arranging inputs and bit-transposition of outputs required in conventional PUD approaches. Our experimental evaluation with four DDR4 DRAM modules shows that MVDRAM achieves comparable or even better inference speed than the processor-based implementation for GeMV operations in low-bit (under 4-bit) LLM.

Get the Android app

Or read this on Hacker News

Read more on:

Photo of dram

dram

Photo of shelf

shelf

Photo of bit llms

bit llms

Related news:

News photo

SK Hynix dethrones Samsung as top dog in DRAM market for first time in 30 years

News photo

Micron to invest $2.17 billion to expand U.S.-based memory production | Micron to expand production capacity for specialty DRAM products in Virginia.

News photo

DRAM prices expected to decline in early 2025 impacting PC, server, and GPU VRAM markets