Get the latest tech news
Nonlinear Schrödinger numerical simulation in 3D
Updates/frame fps: Rotate view New Ψ Sketch V Erase V Sketch size Sketch depth Show Ψ( r ) Colour phase Ψ opacity: Map opacity from: |Ψ( r )| |Ψ( r )|² 1 / |Ψ( r )| Show V( r ) V( r ) opacity: View type: Planar slices Volume render xy slice - z offset: yz slice - x offset: zx slice - y offset: Colour brightness Alpha brightness Number of slices Slice size This is some text Grid size 64x64x64 128x128x128 256x256x256 Preset V(x, y, z, t) Free (periodic) Harmonic Double slit Spherical well Repulsive "spike" Attractive "spike" Absorbing boundaries (A.B.) Double slit (A.B.) Repulsive "spike" (A.B.) Attractive "spike" (A.B.) Moving cylinder Enter V(x, y, z, t) (To reduce numerical error, V will be clipped so that |V(x, y, t)| < 2) Preset nonlinear term None 1000*abs(a*psi)^2 a*exp(-abs(psi)^2/0.01^2) Combination of above two Enter nonlinearity f(Ψ) Kinetic energy-momentum relation: KE(px, py, pz) Re(Δt) Im(Δt) Normalize Ψ after each f.
Grid size 64x64x64128x128x128256x256x256
Or read this on Hacker News