Get the latest tech news
There are no particles, there are only fields (2012)
Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying it's also true of non-relativistic systems. Particles are epiphenomena arising from fields. Thus the Schroedinger field is a space-filling physical field whose value at any spatial point is the probability amplitude for an interaction to occur at that point. The field for an electron is the electron; each electron extends over both slits in the 2-slit experiment and spreads over the entire pattern; and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public. This article reviews classical and quantum fields, the 2-slit experiment, rigorous theorems showing particles are inconsistent with relativistic quantum theory, and several phenomena showing particles are incompatible with quantum field theories.
View PDF Abstract:Quantum foundations are still unsettled, with mixed effects on science and society. As this paper shows, experiment and theory imply unbounded fields, not bounded particles, are fundamental. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public.
Or read this on Hacker News